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Dynamic behavior of two identical reaction cells with linear symmetric coupling 
is studied in detail. The standard model reaction scheme "Brusselator" is used as 
the description of the kinetics. The uncoupled cells can exhibit either a stable 
stationary state or stable periodic oscillations. A number of stationary and 
periodic oscillatory patterns arise as a result of the coupling. A non- 
homogeneous spatio-temporal organization includes homoclinic and 
heteroclinic oscillations as well as chaotic regimes. Numerical continuation 
algorithms are used to determine the dependence of stationary and periodic 
solutions on parameters. Stable stationary nonhomogeneous regimes exist 
typically at intermediate levels of coupling intensity. The nonhomogeneous 
periodic solutions arise either via Hopf bifurcatios from stationary solutions or 
via period-doubling bifurcations from the homogeneous periodic solutions. The 
results obtained may serve as a standard for the study of the behavior of other 
coupled systems in which either a stable stationary state or stable oscillations 
exist in the single cell. 

KEY WORDS:  Nonlinear dynamic systems; coupled cells; bifurcations; 
dependence of solution on a parameter; oscillations; chaos. 

1. I N T R O D U C T I O N  

Coupled reaction cells with mutual mass exchange are standard model 
systems for the study of reaction~tiffusion processes in living cells, tissues, 
chemical reactors, and various compartmental representations of 
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physiological systems. ~ The system of coupled reaction cells with mutual 
mass exchange through common walls was also used for experimental 
explorations of various steady-state and time-dependent regimes. Thus, 
coexisting steady states in two cells (sa) and combinations of non- 
homogeneous steady states (Turing structures) in the system of up to seven 
cells (sb) as well as periodic and aperiodic time-dependent regimes in two- 
coupled cells ~6) were reported. 

The models of two coupled reaction-diffusion cells were until now 
mostly studied by direct numerical simulation of dynamic mass 
balances. (1~'7"8~ Recently, a systematic methodology for study of global 
properties of steady-state and transient solutions in similar systems was 
developed. ~9) In this paper we discuss the results of detailed studies of 
various regimes observed in two identical reaction cells with the 
"Brusselator" kinetic scheme coupled by diffusion. We believe that the 
results of such a study can be of general validity for coupled dissipative 
oscillators. 

2. M O D E L  

The model of two well-mixed reaction cells with linear diffusion 
coupling and the Brusselator reaction kinetic scheme is used as a standard 
model system for the discussion of dissipative structures in nonlinear 
chemical systems, (m/ in the same way as the Lorenz model serves for the 
studies of chaotic behavior in simple models of turbulence. (H'~2/ 

The model (cf. Fig. 1) can be written in the form 

dX/dt = v( X) ( 1 a) 

x1] ~A--(B+ I)X 1 -}- X2yl "}- DI(X 2 -- x1) ] 

| | 
X =  ylx2 , v(X)= ] t ) ~ t ) / - A ' B + I ' x 2 + x ' y 2 + D ~ x * - x 2 " "  (lb) 

Y2 [_ BXz- X~y2 + D2(Yl-  Y2) ] 

Here A, B are constant parameters and x~, y~ ( i= 1, 2) are dimensionless 
concentrations of reaction intermediates X and Y in the first and second 
cells. The parameters D~ and D2 define the intensity of mass exchange 
between the cells. In the numerical computations we set A = 2 ,  
DJD2=q=O.1 and study solutions of the system (1) in dependence on 
two parameters B>0 ,  DI>~0. In the following, the system (la, b) with 
DI = D 2  = 0 and x 1 = x2, Yl = Y2 will be called the decoupled system. 
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Fig. 1. Two reaction-diffusion cells with mutual mass exchange. 

2.1. S y m m e t r y  in the  M o d e l  

The choice of two identical cells (with respect to values of the 
parameters in the kinetic model) is reflected in the inherent symmetry of 
the vector field v. 

It holds 

U[~0(X')] ~- (~9 [-U(X)], @2 = id (2) 

where ~0 can be represented by a permutation matrix 

0 0 1 0 1 0 0 0 1 
cp= I 0 0 0 

0 1 0 0 

(3) 

exchanging the first component of the vector X with the third one and the 
second component with the fourth one. This corresponds to the exchange 
of cells. Hence, the orbits of (i) are mutually symmetric with respect to the 
symmetry plane A in the phase space N4, given by 

A = { X e  ~4; x1 ~-x2, Yl =Y2} 

The orbits located in A will be called homogeneous, the others will be 
called nonhomogeneous. 

The following qualitatively different types of orbits exist 

1. Two distinct nonhomogeneous asymmetric orbits F and F exist such 
that F =  q)(F) and F =  ~0(P). 
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A single orbit F invariant with respect to q) exists and two possibilities 
arise, i.e., (a) a nonhomogeneous A-symmetric orbit exists, F =  q~(F), 
FCA (orbits of this type cannot be steady-state solutions) or (b) a 
homogeneous orbit exists, F =  q~(F), F e  A [orbits of this type are iden- 
tical with those of decoupled system (1)]. 

2.2. S teady -S ta te  Analysis 

Steady-state solutions satisfy 

v ( x )  = o (4) 

It holds 

xl + x2 = 2A (5a) 

and for 

/ , / = X  1 - - X  2 

we obtain (13) either 

u = 0  (5b) 

or u satisfies a biquadratic equation 

qcou4+4(B-2A2qco+2DlCO)u2+ 16(A4qco-A2B+2A2D1oa)=O (5c) 

where e) = (D1 + 0.5)/D1. Then 

2A(2B + q(.ou 2 ) q(.ou 
Yl -- 4A 2 + u 2 2 (5d) 

2A(2B + q~ou 2) qo)u 
Y2 - 4A 2 -I- u 2 ~- - - ~  (5e) 

It follows from (5b) and (5c) that either one, three, or five steady-state 
solutions exist. The homogeneous solution SH: Ix1 =x2 =A;  
Yl = Y2 = B/A] lies in A and exists for all values of parameters. The non- 
homogeneous solutions exist in asymmetric pairs S~, S~ and S~, S 2 
(Table I). All four nonhomogeneous solutions exist for parameter values 
satisfying (13) 

c o ( 4 A x / - ~ q - - Z D 1 ) < B < e ~ ( A 2 q + 2 D t ) ,  4D~<AZq (6a) 
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Two nonhomogeneous solutions exist for 

B>~(A2q+ 2D1) (6b) 

The dependence of these nonhomogeneous solutions on B and D I is 
shown in Fig. 2. The solutions are characterized by means of the coordinate 
xl; all points on the surface n in the space (xl, B, D~) represent the non- 
homogeneous steady-state solutions. The symmetry of solutions with 
respect to A corresponds to the symmetry of n with respect to the plane 
xl = A. A cross section of surface n with plane B = 5.9 is shown in Fig. 3. 

We obtain so called solution diagram, a dependence of the chosen 
norm of the solutions on one parameter, here D~. Such a diagram can be 
generated by means of standard continuation algorithms, t9/ It can be seen 
from Fig. 3 that nonhomogeneous steady-state solutions bifurcate from SH 
via symmetry-breaking bifurcations, i.e., in pairs mutually symmetric with 
respect to A. The stability of steady-state solutions is also depicted in Fig. 3 
(eigenvalues of the linearized system were evaluated to determine the 
stability). 

The stability of SH can be easily determined analytically. On lineariz- 
ing (1) around SH and solving the eigenvalue problem, the characteristic 
equation is 

[ 2 2 - ( B  - 1 - A 2 ) 2 + A 2 ] { 2 2 - [ B - 1 - A z - 2 D ~ ( I + q  1)]2 

+ ( l+2D1) (A2+2Dlq  1)- 2BDlq -~}=0 (7) 

t 0-01 0.1 1.0 10 D 1 

0 
Fig. 2. Steady-state solutions in (xl,  B, D1) space; the nonhomogeneous  solutions lie on the 
surface n, which is symmetric with respect to the plane of homogeneous  solutions xl = A = 2 
(only the upper part of the solution surface is shown here)�9 The solutions S 2 and S 2 arise at 
the cusp point C. 
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Fig. 3. Solution diagram of steady-state solutions (dependence of x~ on DI) , B =  5.9. Full 
line--stable solution; dashed line--unstable solution; periodic solutions branch off at the 
Hopf bifurcation points denoted by O, cf. Fig. 6. 

Of special interest are bifurcations from SH, occurring when an eigenvalue 
2 is either zero (appearance of nonhomogeneous steady-state solutions) or 
pure imaginary (appearance of a periodic solution called Hopf bifurcation). 
The loci of bifurcation points in the (B, DI) parametric plane form curves 
which are together with the loci of points of bifurcation from non- 
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Fig. 4. Bifurcation diagram of steady-state solutions in the parametric plane (B, DI). The 
plane is divided by the bifurcation curves into regions denoted by i n -  n, where m is the total 
number of solutions and n is the number of stable solutions. Full lines--limit points (curve r2) 
or symmetry breaking bifurcations (curve rl); dashed lines--Hopf bifurcations from stable 
steady-state solutions; dotted lines--Hopf bifurcations from unstable steady-state solutions. 
Curves of Hopf bifurcations, as well as degenerate bifurcation points G1, G2, are described in 
Section 3.2. 
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homogeneous steady-state solutions shown in Fig. 4. This so-called bifur- 
cation diagram enables one to determine the number and stability of 
steady-state solutions in various regions of the parametric plane (B, Dx). 

The condition for the symmetry breaking bifurcation from S~ is 
obtained from (7) when 2 = 0, i.e. 

B = o)(AZq + 2D1 ) (8a) 

(see curve rl in Fig. 4). The condition for the coalescence of S~ with S~ 
(and S~ with S~) at limit points can be obtained from (5c) by putting the 
discriminant equal to zero, i.e. 

B = co(4A D x / ~  q -  2D1) (8b) 

(see curve r2, Fig. 4). The description of Hopf bifurcation curves is given in 
Section 3.2. 

It follows from the stability analysis that stable nonhomogeneous 
steady-state solutions may exist for a range of parameter values where the 
homogeneous solution Sn is not stable and/or when homogeneous 
oscillations may be expected. Similar behavior was observed in experiments 
with the Belousov-Zhabotinski reaction in two coupled cells/14) An 
appearance of stable-steady states, when two oscillating cells are coupled, 
have been computed for several models by Bar Eli. (15t 

3. C L A S S I F I C A T I O N  OF P E R I O D I C  S O L U T I O N S  A N D  
T H E I R  B I F U R C A T I O N S  

According to the classification of orbits in Section 2.1, periodic 
solutions can be either nonhomogeneous (divided into asymmetric and A- 
symmetric solutions) or homogeneous. Note that the A-symmetric periodic 
oscillations with the period T imply the following phase relations 

xl It + (T/Z)] = x2(t) 
(9) 

y l [ t  + (T/2)] = y2(t) 

i.e., both cells oscillate in opposite phases and hence the A-symmetric 
solution may be also called an "antiphase" solution. 

It is useful to differentiate among the two types of asymmetric 
solutions according to the character of the mass exchange between the cells. 
The flux of the component X (or Y) can be either unidirectional or it can 
alternate, i.e., sgn(x l -x2)  or s g n ( y l - y 2 )  is either constant or it alter- 
nates. 
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Based on the symmetry and on the character of the mass flux between 
the cells, the following classification of periodic solutions (P) can be made 
(cf. Table I) 

(1) Homogeneous solution (Pu) with the orbit located in A (zero mass 
flux between the cells). 

(2) Nonhomogeneous solutions: 

(a) A-symmetric or antiphase solution (PNA); the corresponding 
closed orbit is self-symmetric with respect to A and thus (9) 
holds. Here sgn(x 1 - x 2 ) =  1 in one half of the period and 
sgn (x i -  x2)= - 1  in the other one; hence, the flux alternates. 

(b) In-phase asymmetric solutions (PN~ if Xl>X2 and PNI if 
xz < x2); two closed orbits PNI and *Pr~ are mutually symmetric 
with respect to A; the flux between cells is unidirectional. 

(c) Out of-phase asymmetric solutions (PNo if xl > x2 in the larger 
part of the period and/SNo otherwise); opposite to the in-phase 
solutions, the flux between the cells alternates. 

The periodic solutions (both stable and unstable) can be found 
numerically using an algorithm based on the transformation of the system 
(1) into a boundary value problem with mixed boundary conditions. This 
algorithm combined with an algorithm for the continuation of solutions in 
dependence on a parameter (9~ was used for the computation of one 
parameter family of periodic solutions, cf. Appendix or Ref. (16). 

The stability of the computed periodic solutions is determined on the 
basis of the eigenvalues kz (multipliers) of monodromy matrix M, which 
represents the linearized flow along the periodic orbit, using the charac- 
teristic equation 

det (M-/xI)  = 0 

The characteristic multipliers are computed along the branch of 
periodic solutions; the computation is easily realized in combination with 
the above-mentioned continuation algorithm. One multiplier is always 
equal to + 1 because the system (i) is autonomous. If all remaining mul- 
tipliers are contained inside the unit circle, then the corresponding periodic 
solution is stable. If at least one multiplier lies outside the unit circle, the 
periodic solution is unstable. 

3.1. Bifurcat ions of Periodic Solut ions 

The stability may change at the bifurcation points, where one of the 
multipliers computed along the branch of solutions crosses the unit circle. 
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We recognize the following types of bifurcation points (cf. Fig. 5): 

(a) Type (+1), # = 1: limit point on the dependence of periodic solutions 
on a parameter. The number of solutions changes by two when a 
parameter is varied. Both stable and unstable periodic solutions can 
coincide at this point (cf. Fig. 5a). 

(b) Type ( -1 ) ,  /~= -1:  period doubling bifurcation point. A branch of 
solutions with double period branches off the original branch of 

C] ,o o~ 

00000000 

b =oo2Too �9 
oooeeoee 'ooooo~ 

C 00 O0 � 9  

0 0 0 0 0 0  ~00000 
�9 ~ ~ 

d ~ 

000000000000000 

0000000 

pQrameter 
Fig. 5. Local bifurcation involving periodic solutions: (a) type (+l)-- l imit  point; (b) type 
(-1)--period doubling; (c) type (SB)~symmetry breaking; (d) type (T)--torus bifurcation; 
(e) type (H}--Hopf bifurcation. Stable (unstable) steady-state solutions are denoted by full 
(dashed) lines, stable (unstable) periodic solutions by full (empty) circles, and tori by 
asterisks. Only bifurcations of stable solutions are shown, but bifurcations of unstable 
solutions from both stable and unstable branches may occur as well. 
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solutions. The continuation algorithm at such a bifurcation point con- 
tinues along the original branch of solutions (cf. Fig. 5b). The new 
branch has/~ = 1 at the point of the bifurcation. 

(c) Type (SB), kt= 1: symmetry breaking bifurcation point. A pair of 
solutions mutually symmetric with respect to A bifurcates from a A- 
symmetric or a homogeneous periodic solution. This bifurcation can 
generically arise only in systems with inherent symmetry (cf. Fig. 5c). 

(d) Type (T), /~1,2=co1+ico2, COl 2+co2 2=1, ~t n r  n = 1 , 2 , 3 , 4 :  bifur- 
cation into an invariant torus (cf. Fig. 5d). 

(e) Type (H): Hopf bifurcation, i.e., a bifurcation of the branch of 
periodic solutions from the branch of steady-state solutions (cf. 
Fig. 5e). It occurs at such points on the branch of steady-state 
solutions, where the matrix of linearization of the right-hand sides of 
(1), {Ov/•x}, has a pair of purely imaginary eigenvalues. 

The above types were numerically found in the system of two coupled 
cells studied in this paper. However, system (1) may also possess global 
bifurcations involving periodic solutions(17~; see Section 6. 

According to Mallet-Paret and Yorke, (18) we define a branch of 
solutions as a continuous set of orbits in the space N4x ~ (i.e., in the 
product of the phase and parametric spaces--B, D I e N1 are considered 
parameters) representing unique smooth dependence of both periodic 
solution and of the period on the parameter. Every two branches that have 
a common limit point belong to a family of solutions. Thus the family is a 
union of all such branches. The family of solutions may start (or terminate) 
at a Hopf bifurcation point, a period doubling bifurcation point, a sym- 
metry breaking bifurcation point, or at a point where the period and/or 
amplitude tend to infinity. The family can be also formed by a closed cycle 
of branches (the first and the last branch are joined at the limit point). A 
single branch may also form a family. For example, applying the analogous 
definition to steady-state solutions, we have five branches SH, S~, S~, S 1, 
S-~ and three families S~, S~ u S~, S~ ~ S~ (cf. Figs. 2 and 3). This 
definition of the family can be extended to a higher-dimensional parameter 
space. 

Every family of periodic orbits thus belongs to one of the six 
types--PH, PNA, PNI, PNI, PNO, ]SNO- 

3.2. Hopf Bifurcation 

The loci of all Hopf bifurcation points form smooth curves located on 
the surface of stationary solutions in (X, B, DI) space. Projections of these 
curves into the plane (B, D1) are shown in Fig. 4. 
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The Hopf bifurcation points for the family of homogeneous steady- 
state solutions Sn of (1) are determined using (7) by the relations 

B = 1 + A 2 (10a) 

o r  

B=I+AZ+2D~(I+q 1), B<oo(2D~+qA 2) (10b) 

The relations (10a) and (10b) define for fixed A and q curves in the 
(B, D1) parametric plane along which the Hopf bifurcations occur, cf. cur- 
ves ho and hi in the Fig. 4, respectively. 

The condition (10a) (curve ho) corresponds to the bifurcation of pn. 
We can easily check numerically that PH exists always when B > 1 + A 2 
(i.e., independently of the value of DI) which is the consequence of the 
existence of periodic oscillations in a single isolated cell. 

It follows from theoretical considerations on two symmetrically 
coupled oscillators (~9) that condition (10b) (curve h~) corresponds to the 
bifurcation of an unstable antiphase periodic solution PNA" The con- 
tinuation algorithm can be used starting close to the point of Hopf bifur- 
cation; the method of asymptotic expansions may be used in the 
neighborhood of the Hopf bifurcation point (2~ to obtain starting values of 
periodic solutions for the continuation algorithm. 

If we admit equality in (10b) (cf. point G~ in Fig. 4) then SH is 
degenerate with double zero eigenvalue, which leads to a global Hopf 
bifurcation. (17) 

Hopf bifurcation curves exist also on the families of nonhomogeneous 
solutions SN. The curves h2 and h3 in Fig. 4 are composed from two parts, 
corresponding to a Hopf bifurcation from either a stable or unstable 
solution. Both parts of the curve h2 start from points of a degenerate bifur- 
cation with two purely imaginary and one zero eigenvalues. The unstable 
part goes through the S 2 branch, then reaches the S~ branch via the limit 
point, and meets the stable part at the point with two pairs of purely 
imaginary eigenvalues. This point is the point of intersection of h2 and h3 
and divides h3 into stable and unstable parts as well. The curve h3 extends 
on the S~ branch very close to the curve r2 of limit points and reaches this 
curve at the point G2 with double zero eigenvalue. 

Both h2 and h3 correspond to the bifurcation of in-phase periodic 
solutions. In addition, there exists a mirror image to each point on h2 and 
h 3 with respect to A for a given B, D~. Although the projection in Fig. 4 
cannot distinguish between a solution and its mirror image, this can be 
done with the help of Fig. 2. 

The curves h2, h3 were computed numerically in the following way. 
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First, a direct iteration technique (2~) was used to locate a point of the Hopf  
bifurcation and then, starting from this point, the continuation algorithm (9) 
was utilized for the construction of the entire curve. 

4. DEPENDENCE OF PERIODIC SOLUTIONS ON D 1 

Let us take A =2 ,  q=0.1 ,  and B = 5 . 9  and follow the dependence of 
periodic solutions on D1. Under these conditions the corresponding single- 
cell system has an unstable stationary solution (corresponding to SH) and 
a stable periodic solution (corresponding to P~). 

4.1. Periodic Solut ions Originat ing at Hopf  Bi furcat ion Points 

From Fig. 3 we can infer that one point of the Hopf bifurcation from 
SH and three symmetric pairs of the Hopf  bifurcation points from SN exist. 
The branches of periodic solutions are depicted in dependence on D~ in the 
solution diagram in Fig. 6. The amplitude c~x I of the concentration x~ is 
taken as the norm, T denotes period) 

5x1= max xl( t )-  min x~(t) (11) 
t e  [0 ,T]  t e  [0, T]  

The following solutions arise at the points of Hopf bifurcation 

(a) D~ -~ 0.0409: Unstable periodic solution P~A branches off the solution 
SH and continues in the direction of the increasing D1. 

(b) D1 ~- 0.0382: From the solution S 1 (or from the symmetric solution 
S~) bifurcates unstable periodic solution P ~  (or P3i ,  respectively) to 
the right (cf. Fig. 11). These solutions are of the in-phase type. 

~ •  I : 

51 . . . . .  - . . . .  ,~ . . . . . .  ~ . . . . . . . . . .  4-.-J% : 

0.01 0.1 1.0 D1 

Fig. 6. Dependence of the amplitude 5 x  I of several periodic solutions on DI, B= 5.9. Full 
lines--stable solutions, dashed lines--unstable solution, x--Hopf bifurcations, �9 
breaking bifurcations, �9 doubling bifurcations, ~--heteroclinic loops. No bifur- 
cations occur at the other intersections of the lines. The complicated structure of solutions in 
the rectangle is shown in Fig. 8. 
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(c) D1 ~-0.0446: Unstable solution Phi (/SNI, respectively) branches off 
the solution S~ (S~, respectively) to the right. 

(d) D1 - 0.9543: Stable solution P ~  (P~I, respectively) branches off the 
solution S h (S~, respectively) to the right. 

The homogeneous periodic solution PH has arisen by a Hopf bifur- 
cation at B = 5, cf. (10b), and its amplitude is independent of D1, cf. Fig. 6. 
The stability of PH depends on D~ ; there are two bifurcation points of the 
type (SB), where two mutually symmetric solutions Phi, Phi and P2I,/5~t 
branch off the P~. These families have arisen on the other side through 
Hopf bifurcations from S 2, ~2 and S~, Sh. Hence they connect steady- 
state behavior with the periodic one. The symmetry breaking bifurcations 
cause the instability of PR in the interval 0.063 ~ D1 ~ 1.122. 

4.2. W e a k  and I n t e r m e d i a t e  I n t e r a c t i o n  

Examples of solutions for low and intermediate values of 
DI(D1 ~ 0.1) are depicted in Fig. 7. In addition to the branches arising 
through Hopf bifurcations (cases a-c in Sect. 4.1) we can observe also other 
periodic solutions denoted as PNo,/sNo, P~a. These solutions arise either 
through secondary bifurcations or through a primary bifurcation that is 
connected with the variation of other parameters than D1. 

The branch PhA arising via Hopf bifurcation at D 1~-0.0409 
apparently terminates at the point where the period tends to infinity. 
Numerical computations suggest that the branch PhA disappears at a 
heteroclinic loop, cf. Section 5. Similar behavior occurs on the stable 
branch of the family P~A, cf. Fig. 6. The origin of these two heteroclinic 
loops can be elucidated by varying parameter B, cf. Section 6. Two 
examples of periodic solutions from the family P2 a are shown in several 
projections in Fig. 7(b, c). 

Antiphase solutions in this family, shown in Fig. 7b, have an 
interesting behavior at the limit D~--*0. At D~---0.012 a pair of out-of- 
phase solutions PNo, /SNo bifurcates through a symmetry breaking bifur- 
cation from P~A. With decreasing D i, the amplitudes of oscillations in 
both cells approach those in decoupled cells on this branch of the P~A 
family but the phase shift is still equal to half of the period. The entire 
branch is unstable. 

Solutions in the families P~o, PNo, cf. Fig. 7(a), approach for D~ --* 0 
such a state, where the oscillations in the first cell come close to single-cell 
oscillations, while the oscillations in the second cell are damped and 
approach the single-cell steady state. However, all these solutions are 
unstable. 
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Two stable periodic solutions PH and P~A coexist for 0.0112 ~. 
D1 ~ 0.0383 and stable steady-state solutions S~, S~ coexist with the stable 
periodic solution PH in the interval 0.03816 ~ DI ~ 0.063. Hence in a 
small range of values of D1 stable solutions PH, P ~ A ,  S ~ ,  and S~ coexist. 

The remaining solutions from the range of intermediate interactions 
are of the in-phase type and bifurcate via type (H) bifurcation. The asym- 
metric orbits P ~ ,  P~I, cf. Fig. 7(d), bifurcate to the right and finally 
annihilate at the point of type (SB) bifurcation. Both families are unstable 
and each contains two points of type ( - 1 )  bifurcation (newly bifurcating 
branches were not followed). The unstable families P3I, P ~  branch off to 
the right and almost immediately terminate at two mutually symmetric 
homoclinic orbits; see Section 5. 

4.3. Strong Interact ion 

A very complicated system of in-phase nonhomogeneous periodic 
solutions exists in the interval 0.9542 ~ D~ ~ 1.4724 (the interaction is an 
order of magnitude stronger now). The corresponding solution diagram (a 
part of the solution diagram from Fig. 6) is shown in Fig. 8. Let us denote 7 
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of strong interaction. Full lines--stable solutions, dashed lines--unstable solutions; families of 
solutions are connected via period doubling bifurcations with the exception of type (SB) 
(denoted by �9 ) bifurcation connecting Pl and PH- Isolated families are shown separately. 
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each family in Fig. 8 by a symbol Pm, where m gives a number of local 
maxima on any coordinate of J((t) within one period. In this notation the 
basic family P~I arising via type (H) bifurcation at D1-~0.9542 is 
equivalent to P1- Let us denote P~m that part of the family Pm, where the 
solutions are stable. To differentiate between the unstable parts of the 
family we make use of the empirical observation that for each unstable 
solution in the family Pm only one characteristic multiplier g lies outside 

+ the unit circle. Let us denote Pm (Pm) that unstable part of Pm where # > 0 
(/~ < 0). For simplicity we omit the symmetric images/5 m. 

At point D 1 -~ 1.1720 the family P2 with a double period bifurcates 
from the basic family P1 ; from the family P2 bifurcates the family P4 with a 
four-fold period (related to P~), and so on. The intervals between the bifur- 
cation values of D1 for the subsequently bifurcating periodic solutions 
decrease geometrically with the universal quotient c5. (22) The sequence of 
the double period bifurcation points is oriented in the direction of the 
increasing D~. 

A similar sequence of the period doubling bifurcations begins also at 
the point D~ ~ 1.4702 close to the limit point on P~; the subsequent bifur- 
cation points are oriented in the direction of decreasing D1. The family P2 
bifurcating at D1-~ 1.4702 finally joins the family P2 bifurcating at D1-~ 
1.1720. Two families P4 bifurcate on this common P2 family; both P4 
families return to the P2 family. Altogether four families of P8 solutions 
bifurcate from the two P4 families, etc. 

Several solution families (e.g., P3 and P5 in Fig. 8) form closed curves- 
isolas; cascades of the period doubling bifurcations may again start from 
the isolas. Any bifurcating family of solutions with the double period ter- 
minates again on the original isola (not shown in Fig. 8). 

The stability changes and bifurcations on individual families of 
solutions occur usually in a very narrow range of the values of the 
parameter D~ and thus they cannot be shown on the scale of the figure. 

Each family Pm can be constructed by joining three types of branches, 
B~,, B + , B~-s, which themselves are combinations of stable and unstable 
parts Pin, Pm + , Pm, cf. Fig. 9. For example, the families P2 and P4 in Fig. 8 
(i.e., the solutions which do not form isolas) arise via the combination 

s - - s  + s~ t ! B m u B  m uB~,- the isolas P3, P3, and P5 can be formed via the com- 
bination B~-Su B + u B~-~w B + and Ps via the combination B + w B~,. 

We may expect that the behavior of families Pm for higher values of m 
will be similar. 

�9 Periodic solutions for D~ = 1.26 from the branches B~ s, B~ 5, B~ s, 
B~ -s, B~ -~, and B~ -~ are depicted in Figs. 10(a-f). 

The structure of periodic solutions in the region of the strong interac- 
tion is very complex (it appears that an infinite number of solutions exist 

822/43/3-4-8 
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Fig. 9. Types of branches forming the families Pm" (a) stable branch B~; (b) unstable branch 
B+; (c) combined branch B~, s with two period doubling bifurcation points. �9 
doubling bifurcation point; O--points where the branches terminate (i.e., Hopf bifurcation 
points, limit points, symmetry breaking bifurcation points, period doubling bifurcation 
points). 

here). On the contrary, the way in which new solutions originate and 
change their stability is simple, cf. Fig. 8. At the limit point a pair of 
solutions bifurcates through (+1)  bifurcation; one solution is stable and 
the second one is unstable. If a bifurcation of the type ( - 1 )  occurs on the 
stable branch, then a cascade of ( -  1) bifurcations is expected to follow and 
terminate at the accumulation point. (22) An interval on the D1 axis where 
stable periodic solutions betwen the limit point and the corresponding 
accumulation point exist will be called window. The numerical com- 
putations suggest that in the range 1.193 ~ D1 ~ 1.470 infinitely many 
windows with infinitely many stable periodic solutions exist. At the same 
time it appears that at many values of D~ no stable periodic solutions exist 
and complicated chaotic attractors are observed. (23) Chaos generated by a 
period doubling sequence repeatedly occurs between the neighboring win- 
dows. In addition, the windows sometimes overlap, which leads to a mul- 
tiple attractor behavior. ~23'24) 

As the behavior of solutions of (1) in the chaotic region is well- 
approximated by a one-dimensional iterated map of an interval, (24) the 
existence of periodic solutions Pm with different m is given by Sharkovskii's 
sequence. (25) 

5. P E R I O D I C  S O L U T I O N S  W I T H  LARGE P E R I O D  

We have observed on several occasions that the period of oscillations 
computed along the followed branch evidently increase to infinity. This 
behavior is to be expected in the neighborhood of a homoclinic orbit or of 
a closed loop consisting of two (or more) interconnected heteroclinic tra- 
jectories. For  example, the dependences of the period along the stable 
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Fig. 11. Dependence of the period of solutions P~qA and P3NI on D1, B = 5.9; stable branch 
P~A approaches the heteroclinic loop, unstable branch P31 approaches the homoclinic orbit. 

branch of P2 A and along P31 and /531 on D 1 are shown for B = 5.9 in 
Fig. 11. The period increases fast with the increase of D1. 

A more detailed study of the development of periodic solutions on the 
branch P~A reveals that the elongation of the period is caused by two 
gradually lengthening phases containing the phase points that are close to 
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Fig. 12. Projections of the periodic orbits P~A, P~z close to the heteroclinic loop and the 
homoclinic orbit, respectively, into the planes (xt, Yt), (xl, x2), and the time dependences of 
x I (full line) and x; (dashed line), B=5.9. (a) P~A, D1 =0.03831651, T= 62.08770; (b) P3I, 
D1 = 0.03822041, T= 42.08532. 
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the stationary states S 2 and ~2, cf. Fig. 12(a). The phase point on the 
corresponding orbit stays at first for almost a half of the period close to ~,2 
and then rapidly jumps close to S 2 and behavesin the same way due to the 
symmetry given by (2). Although it is not possible to continue P~A further 
on from numerical reasons, we may assume that the solution P~A 
approaches a heteroclinic loop between unstable steady states S~ and ~2. 
The same behavior occurs on the unstable branch of P~A- A further 
description involves two parameter families of solutions and is given in the 
Section 6. 

A limit case of the families P3 t and /531 are homoclinic orbits connec- 
ted with steady states S 2 and S~. These periodic solutions branch off to 
the right through the Hopf bifurcation at D1-0.038162; cf. Fig. 11. At 
Da =0.038204 the period of the solution is already very high and the 
solution cannot be continued by the algorithm. ~6) The p3~i and P ~  orbits 
have a very small amplitude and they are nearly planar; cf. Fig. 12(b). 

Construction of homoclinic and heteroclinic orbits is currently the 
subject of intensive research, particularly for low-dimensional systems. (~2'26) 
A general algorithm is also being developed in our research group. (271 

6. BEHAVIOR OF PERIODIC SOLUTIONS IN P A R A M E T R I C  
PLANE (B, D1) 

A numerical computation of two parameter families of periodic 
solutions was done sequentially by choosing several fixed values of the first 
parameter and continuing along the second parameter families. Thus the 
global picture is obviously incomplete and therefore it is presented only in 
a qualitative way, cf. Fig. 13(a-d). Nevertheless, with the exception of the 
possibly complicated behavior arising near several codimension two bifur- 
cation points, we have obtained a rather clear picture of the behavior of 
solutions. 

6.1. Groups of Families of Solut ions 

Families of periodic solutions can be divided into several groups which 
do not appear to intersect each other, i.e., the families within one group are 
not joined with the families of another group via loci of bifurcations. For 
example, one-parameter families for B=5.9  (cf. Sects. 4 and 5) can be 
divided into five groups, cf. Fig. 6: (1) p 2 , ,  ~RNO, /5NO; (2) P~I; (3) /D3I; 
(4) PIA, (5) PH, PNI, etNI, P2I,/52i, and all other solutions from the range 
of strong interaction. However, when the solutions are seen as dependent 
on B and D~ the first, fourth and the fifth groups merge together, as will be 
explained later. 



510 Schreiber, Holodniok, Kubi6ek, and Marek 

t ~-, 
- . . . . . . .  ,~a:_i-% "~ %,/ 

- - - _  ~ i i i  / ~~ ,i I 

• 
i/ --b 

~--. ~ . . . .  ~ . . . . . . . . . . . . . .  

- - - - 2 -  e ~%" PN~ __P~ . . . . . .  :~'- 4~A ,/ ///PNc ~s'[ 
I' c 

t!:- .............. _f,- ~-_%, . . . .  
d 

0.001 0.01 0.1 1 D 1 
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Essentially all families within one group are mutually connected 
through bifurcations (except for some probably truly isolated families 
occurring, e.g., in the region of strong interaction). Thus starting from a 
chosen solution for given B and D1 we can reach any solution in the same 
group by choosing a continuous path through the group. Let a primary 
family be that which starts from a steady-state solution via Hopf bifur- 
cation and a secondary family be that which bifurcates from a primary 
family, etc. 

6.2. Classif ication of  Families of Solut ions 

Behavior of two-parameter families P~qI and P 3 1  is relatively simple. 
For given B and D1 the solutions from p 3  and -P~i are mutual images 
under q~ [cf. Eq. (2)] and although both families form two distinct groups, 
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they can be treated simultaneously. They originate at the curve of the Hopf 
bifurcation points (cf. cu rve  h 3 in the Fig. 4) from the nonhomogeneous 
solutions S~, S~, respectively [two curves of the Hopf bifurcation points 
in the space ~4X ~2 merge together in the projection into the (B, D~) 
plane]. The curves terminate at the critical point Gz=(B_~5.38276; 
D ~ -  0.04543) where two pure imaginary eigenvalues vanish. It seems that 
the results of Bogdanov (17) are directly applicable and we may conclude 
that a one-parameter family of homoclinic orbits (and its mirror image) 
arise at G2. Numerical computations show that this curve extends very 
near to the Hopf bifurcation curve h3 forming a very narrow cusp-shaped 
region of the existence of P ~  and P 3  I. The width of this region at B = 5.9 
can be seen in Fig. 11. 

All remaining families of solutions are interconnected via loci of bifur- 
cations and form the third group. This group includes a very complicated 
structure of solution families originating from a primary ones which them- 
selves originate at three curves of the type (H) bifurcation points (cf. curves 
ho, hi and h2 in Fig. 4). 

The first Hopf bifurcation curve is given by (10a) and is associated 
with the appearance of the homogeneous solution PH (cf. curve ho in 
Fig. 4). The bifurcation diagram for PH in Fig. 14 shows two regions R~ 
and R2 of instability of PH bounded by bifurcation curves. The boundary 
of R~ is formed by a closed curve of type ( - 1 )  bifurcation points. The sym- 
metry of the system implies that an antiphase solution PNA with a double 
period will bifurcate along this curve, (28) cf. Fig. 13(b, c). 

The one-parameter family originating along the boundary of R1 is 
shown in Fig. 15 as a family depending on B for D~ = 0.02. Using Fig. 6 we 
can conclude that this family is of the type P 2  A. However, a chosen 
solution from the family P~A (cf. Fig. 6) continued in dependence on B for 

B 

61 

PH s tab le  
(SB) 

r ~ R 1 ~ I R 2 ",~ 

(H) 

PH does not exist  

I I I 

0.01 0.1 1 D 1 

Fig. 14. Bifurcation diagram of the homogeneous periodic solution Pn in the (B, D~) plane. 
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Dependence of the amplitude 6 x  I of the solutions PH and P2 A on B, D 1 = 0.02. 

fixed D 1 leads again to  P 2  A. It follows that P~qA and P 2  A form a unique 
family (denoted by PNA) when considered as dependent on B and D1 
simultaneously. This family bifurcates from PH via period doubling bifur- 
cation (cf. Fig. 14) and at the same time from Sn via Hopf bifurcation (cf. 
curve hi in Fig. 4). Hence PNA is a primary family. The situation is 
schematically shown in Fig. 13(a-d), cf. also Fig. 6. Two heteroclinic loops 
described for B = 5.9 come close together if B is decreased and finally 
merge and disappear. The disappearance of one of both heteroclinic loops 
with increasing B is associated with the degenerate bifurcation point G1, cf. 
Fig. 4. It is described in Section 6.3. 

The boundary of R2 is formed by two parts, the linear part of type (H) 
bifurcation points being at the same time a part of the line given by (10a) 
and the curve of the type (SB) bifurcation points. The symmetry of (1) 
implies that a pair of the in-phase solution families PNI,  PNI will bifurcate 
along the (SB) curve, cf. Fig. 13(a-d). 

Our numerical computations show that these families themselves bifur- 
cate (or terminate) from two symmetric curves of the Hopf bifurcation 
points on a branch of nonhomogeneous steady states (cf. curve h2 in 
Fig. 4). All solutions appearing via Hopf bifurcation from a non- 
homogeneous steady state must necessarily be of the in-phase type, and 
this is in agreement with the branching of the in-phase solutions from the 
(SB) curve. Thus PNI and /%~ are primary families, and they meet each 
other and at the same time intersect PH at the (SB) curve of the boundary 
of R2. The intersection is limited to 5 ~ B ~ 6.7, cf. Fig. 14: Comparing 
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these results with the solutions studied in Section 4 for B = 5.9, we are led 
to the conclusion that 1 -,  PNI(PNI) from the region of intermediate interac- 
tions and 2 -2 PNI(PNI) from the region of strong interactions are joined for 
B ~ 6.7 and form a unique family (denoted by PM(PNI)) when considered 
as two-parametric systems. 

6.3. Period Doubl ing and Tori Bi furcat ions 

The continuation algorithm (16) based on a simple shooting procedure 
was used in cases where the modulus of the largest multiplier was not too 
high. For very high values of the multiplier (approximately higher than 
10 8 ) we switched to the multiple shooting algorithm. It appears that only 
small regions of stable nonhomogeneous periodic solution exists for B g 8 
and thus we did not follow this region in more detail. Instead, we studied 
two regions of the (B ,  D1) plane containing two types of chaos. (23'29) 

Fig. 16a contains a bifurcation diagram of the solutions PN~ in the 
(B, Dj) plane (see also Fig. 6, 8, 13a-d). PyI is bounded by the curves of 
type (SB), (H) and (+1) bifurcation points and a bifurcating family with 
double period is bounded by the type ( -1 )  bifurcation curve. Isolated 
families as well as potentially chaotic behavior exist inside the region boun- 
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ded by the curve of accumulation points of the period doubling sequences 
close to the type ( - 1 )  curve (not shown in the figure). Note that there is a 
region in the (B, D1) plane such that stable nonhomogeneous oscillations 
exist for B < 1 + A 2, i.e., the interaction between the cells can lead to an 
oscillatory state even when the isolated cells possess no periodic solution 
(see also Ref. 30). 

The second region of interest involves the bifurcation of tori from 
PNA, cf. Fig. 16(b). The region of existence of PNA is bounded by the curve 
of the type ( - 1 )  bifurcation points. In the cusp region bounded by two 
curves of the type ( + 1) bifurcations there exist three different solutions (cf. 
Fig. 13c); two are stable and one is unstable close to the cusp point C~. 
However, there exists another bifurcation changing the stability of 
PNA--the bifurcation of type (T). PNA is unstable inside the region formed 
by the (T) curve, and a large number of new periodic solutions associated 
with the phase-locked tori and with chaotic attractors arise. (29) According 
to general results, (31'33/ the global picture of periodic solutions in this 
region is expected to be very complicated. A detailed numerical study 
might be of interest as very similar behavior including symmetries was 
recently observed in experiments. (32~ 

The curves of the limit points and of the tori bifurcations were com- 
puted using a modified algorithm. (9'16) To understand the global behavior 
of various branches of the PNA family we also included curves along which 
the heteroclinic loops appear though they are computed with a limited 
accuracy. One of the curves of limit points emanating from C1 splits into 
two curves of heteroclinic loops. One of these curves terminates at the 
point G~ = (B--5.97979, DI ~-0.04454) where the stationary solution SH 
has two zero eigenvalues. This point coincides with the end point of the 
Hopf bifurcation curve h0 (cf. Fig. 4) and we may expect similar behavior 
as in the vicinity of the point G2. However, due to the symmetry (2) the 
point G~ does not fall into generic cases considered by Bogdanov. (~v) This 
case was studied by Fiedler/17~ who shows that a limiting case of periodic 
orbits with an infinite amplitude or period exists in the vicinity of G1. The 
expected curve of homoclinic orbits is replaced by the curve of heteroclinic 
loops. 

The second curve of limit points starting at C~ terminates at the point 
C2 which again lies on the curve ho. The periodic solutions appearing along 
h0 change the direction of the bifurcation at C2. 

7. C H A O T I C  B E H A V I O R  

Two different types of aperiodic (chaotic) solutions of (1) exist. (23'29) 
The first type exists in the region bounded by the curve of the ( - 1 )  bifur- 
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cation points in the bifurcation diagram in Fig. 16(a) and is closely connec- 
ted with the complex structure of periodic solutions discussed in detail for 
the range 1.1933 ~ D1 ~ 1.4724, B=5.9 .  A numerical simulation of (1) 
reveals that for the randomly chosen values of parameters from the above 
range the solution trajectory approaches either some periodic solution P,, 
(belonging to a window of periodic solutions) or a set of very complicated 
structure--a chaotic attractor. (23) All the solutions have always xl > x2 (or 
x2 > xl); therefore, we may speak about an "in-phase chaos." This type of 
chaos appears through an infinite cascade of period doubling 
bifurcations. (22) 

The second type of chaotic behavior arises through a sequence of 
bifurcations from a torus, which itself bifurcates from the antiphase 
periodic solution; hence, we may call it an "antiphase chaos." The structure 
of bifurcations leading to this type of chaotic attractor is complicated (29) 
and similar to the structure of bifurcations observed in some discrete maps 
in ~2.(32,33) 

If we choose a hyperplane Z (three-dimensional) in the phase space, 
then the intersections of the chaotic trajectory with Z will form a set, often 
called a Poincar6 map, which characterizes a chaotic attractor, Typical 
Poincar6 maps for both types of chaos are shown in Figs. 17(a, b). 
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Fig. 17. Projection of the Poincar6 maps of chaotic attractors into the plane (x 1, x2). The 

surface of section Z is defined as { (x l ,y l ,  xe, Y2); x l - Y I + X 2 - y 2 = 2 ( A - B / A ) } .  (a) 
B =  5.9, D 1 = 1.263; (b) B = 5.5, D1 = 0.0521. 
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8. D I S C U S S I O N  

In order to complete the picture of possible types of behavior of two 
coupled Brusselators, it is necessary to consider the variation of remaining 
parameters, A > 0 and q >i 0. The changes of A do not lead to considerable 
changes of families of solutions, but the effect of variation of q is 
remarkable. The two-parameter families described in Section 6 (A =2, 
q = 0.1) do not qualitatively change when q is decreased. All families exist 
even for q = 0  (the (B, D1) plane must be now replaced by the (B, D2) 
plane), including the in-phase and antiphase chaos and the heteroclinic and 
homoclinic behavior. On the other hand, the behavior is changed con- 
siderably when q is increased. This is caused by a successive shrinking and 
finally by a disappearance of both the Hopf bifurcation c u r v e  h 2 (cf. Fig. 4) 
and the bifurcation curves of types ( -1 )  and (SB) (cf. Fig. 14). Thus all 
families of nonhomogeneous solutions from the fourth group disappear 
(including both types of chaos). Only the families PNA, PNO, PNO, P3I, 
P3 I, and PH remain for q ~ 2. However, it is not excluded that different 
families which do not occur for small q exist for higher values of q. This 
behavior was observed in a spatially continuous reaction-diffusion 
system. (36) 

A different situation can be expected when two cells with different 
intrinsic frequencies are coupled together. (34) If the coupling is weak, the 
behavior is similar to that of the system (1) in the region of tori bifur- 
cations. However, the nature of the appearance of torus is different. 

9. C O N C L U S I O N S  

The structure of solutions observed in a simple model of two linearly 
coupled cells with the Brusselator kinetic scheme is complicated. The model 
contains cubic nonlinearities and a simple symmetry and we may expect 
that a behavior of other types of linearly coupled oscillators described by 
models of the same structure may be also similar. Numerical methods used 
for construction of bifurcation and solution diagrams (9) may be efficiently 
applied in studies of global behavior of phase flows, as was illustrated on 
the studied example of coupled chemical oscillators. A similar approach, 
based on the continuation of solutions, we also successfully used in the 
analyses of the structure of both stable and unstable periodic solutions in 
the Lorenz model, (35) as well as in a compartmental model of a growth of a 
tissue. (37) 
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APPENDIX:  C O M P U T A T I O N  A N D  C O N T I N U A T I O N  OF 
PERIODIC S O L U T I O N S  

We present here a short description of an algorithm used for the com- 
putation and continuation of periodic solutions based on the shooting 
method, together with a continuation along the arclength of the solution 
locus. A detailed description of the algorithm is presented in Ref. 16. 

We consider an autonomous system of ordinary differential 
equations (1) 

d x  
d t  = v (x ,  c~) (A1) 

depending on a parameter  e, x =  (Xl, x2 ..... x,,). A periodic solution with 
the period T fulfils 

x ( T )  = x(0) (A2) 

Considering the shooting method we choose initial conditions 

xi(0) = ui, i =  1, 2,..., n (A3) 

and the value of the period T. Then the system (A1) can be numerically 
integrated for fixed c~ from t = 0 to t = T. The values of the solution at t = T 
are obtained from the integration as 

x , ( T )  = O,(u~ ..... un, T, c~), i =  1, 2,..., n (A4) 

(they are dependent on the choice of u~ ..... u,,, T, and c~). The relation (A2) 
holds for any periodic solution; thus we have to satisfy n equations 

Fi(u l  ,..., un, T, :~) = Oi(ul  ..... u,,, T, c~) - ui = 0 i = 1, 2,..., n (A5) 

with n + 1 unknowns u~, Uz,..., u~, T and one parameter  ~. We have to fix 
one variable except T. Let us fix uk for some k. Our  choice will be suc- 
cessful if on the trajectory of the kth component  of the wanted periodic 
solution xk ( t ) ,  t ~  [0, T], the chosen value u~ actually exists. Then we 
obtain a system (A5) of n nonlinear equations with n unknowns U =  
(ul,.,., u~ l, uk+1,..., un, T) and one parameter  c~, which can be solved by 
the Newton method for fixed value of ~. To obtain dependence of the 
solution U(c 0 on the parameter  ~ we can use standard routine D E R P A R  (9) 
which is based on the continuation along the arclength of the solution and 
has predictor and corrector (Newton) parts. This continuation algorithm 
requires an evaluation of the functions Fi in (A5) and of the Jacobi matrix 
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OFJOui, OFi/~T, dFtOc~. Elements of the Jacobi matrix can be determined 
on the basis of variational differential equations for variational variables 

pij(t) = ~xi/Ouj, qi(t) = ~x~/O~ (A6) 

These differential equations are obtained by differentiation of (A1) with 
respect to uj and e. The elements of the Jacobi matrix of the system (A5) 
are defined as 

~ =  Pu(T) - ~u, ~F---2 = v~[x(T), ~], OF__j = qi(T) (A7) 
~T ~ 

here 6~ is the Kronecker delta. Thus we have all necessary information 
required by the continuation routine DERPAR and the continuation of the 
solution of the system (A5) for variables ul,..., u,_~, uk+l,...,un, T, ~ can 
proceed until the fixed value of uk "disappears" from the course of the 
periodic solution. To avoid this disappearance, the algorithm follows adap- 
tively the deviation of the chosen uk from the solution. 

The stability of the computed periodic solution can be determined on 
the basis of characteristic multipliers, i.e., of eigenvalues /~ of the 
monodromy matrix 
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